Simplified Predictive Models for CO₂ Sequestration Performance Assessment DE-FE-0009051

Srikanta Mishra

Battelle Memorial Institute

Priya Ravi Ganesh, Jared Schuetter, Doug Mooney Battelle Memorial Institute Louis Durlofsky Jincong He, Larry Zhaoyang Jin Stanford University

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 18-20, 2015

Presentation Outline

- Benefit to the Program / Stakeholders
- Project Overview
- Technical Status
 - Reduced physics based modeling
 - Statistical learning based modeling
 - Reduced order method based modeling
 - Uncertainty and Sensitivity Analysis
- Accomplishments to Date
- Summary

Benefit to the Program

- Research will develop and validate a portfolio of simplified modeling approaches to predict the extent of CO₂ plume migration, pressure impact and brine movement for a semi-confined system with vertical layering
- These approaches will improve existing simplified models in their applicability, performance and cost
- The technology developed in this project supports the following programmatic goals: (1) estimating CO₂ storage capacity in geologic formations; (2) demonstrating that 99 percent of injected CO₂ remains in the injection zone(s); and (3) improving efficiency of storage operations

Benefit to Stakeholders

- Provide *project developers* with simple tools to screen sites and estimate monitoring needs
- Provide *regulators* with tools to assess geological storage projects quickly without running full-scale detailed numerical simulations
- Enable *risk assessors* to utilize robust, yet simple to implement, reservoir performance models
- Allow *modelers* to efficiently analyze various CO₂ injection plans for optimal well design/placement

Project Overview Goals and Objectives

Objective \Rightarrow Develop and validate a portfolio of simplified modeling approaches for CO₂ sequestration in deep saline formations

- **Reduced physics-based modeling** where only the most relevant processes are represented
- Statistical-learning based modeling where the simulator is replaced with a "response surface"
- **Reduced-order method based modeling** where mathematical approximations reduce computational burden
- Uncertainty and sensitivity analysis to validate the simplified modeling approaches for probabilistic applications

Reduced Physics Based Models Background

- Useful alternative to simulators if "macro" behavior is of interest
- Analytical models of radial injection of supercritical CO₂ into confined aquifers
 - (a) Fractional flow model (Burton et al., 2008; Oruganti & Mishra; 2013)
 - (b) Sharp interface model (Nordbotten & Celia, 2008)
- Require extension for semi-confined systems with vertical permeability layering (based on detailed simulations)

Reduced Physics Based Models Approach (using CMG-GEM)

Reduced Physics Based Models Simulation Scenarios

	Parameter	Description	Units	Reference value (0)	Low value (-1)	High value (+1)	Comments
1	h _R	Thickness of reservoir	m	150	50	250	
2	h _{CR}	Thickness of caprock	m	150	100	200	
3	k _{avg'R} (k _R)	Average horizontal permeability of reservoir	mD	46	12	220	
	V _{DP}	Dykstra-Parson's coefficient		0.55	0.35	0.75	Correlated with k _{avg} , _R
4	k_{avg} , CR (k_{CR})	Average horizontal permeability of caprock	mD	0.02	0.002	0.2	
5	k _v /k _H	Anisotropy ratio		0.1	0.01	1	
6	q	CO ₂ Injection rate	MMT/yr	0.83	0.33	1.33	
	L	Outer radius of reservoir	km	10	5	7	Correlated with q
7	f _R	Porosity of reservoir		0.12	0.08	0.18	
8	f _{CR}	Porosity of caprock		0.07	0.05	0.1	
9	l _v	Indicator for permeability layering		Random	Increasing from top	Increasing from bottom	

Deriving insights into performance metric behavior

Quantifying functional relationships between variables based on sensitivity analysis

Validating simplified model to check for robustness

Reduced Physics Based Models *Dimensionless Injectivity – Predictive Model*

9

Reduced Physics Based Models *Average Reservoir Pressure – Predictive Model*

$$\overline{P}_D = f 2\pi t_{DA}$$

$$\overline{P}_D = fC2\pi t_{DA}$$

For a closed/ no-caprock system f depends on relative permeability

C depends on ratio of reservoir storativity to total storativity

Reduced Physics Based Models Storage Efficiency – Predictive Model

Reduced Physics Based Models Sharp Interface Model Evaluation

Model M3: sharp interface model + average gas saturation + Bingham-Reid mixing law

Statistical Learning Based Models Background

- Goal ⇒ replace physics-based model with statistical equivalent
- Experimental design ⇒ selection of points in parameter space to run limited # of computer experiments
- Response surface ⇒ functional fit to input-output data to produce "proxy" models for plume radius and reservoir pressure buildup
- Two common options
 - Box-Behnken (BB) design
 3-pt + quadratic response surface
 - Latin Hypercube sampling (LHS) multi-point + higher-order model

Statistical Learning Based Models Box Behnken Design – Metamodeling

- Data from 2-D GEM simulations of CO₂ injection into closed volume
- 97 run Box-Behnken design with 9 factors
- 4 different meta-models
 - Quadratic
 - Kriging
 - MARS
 - Adaptive regression
- Cross validation using 5 mutually exclusive subsets (78 training + 19 test data points) with 100 replicates

Statistical Learning Based Models **Proxy Models – Plume Radius**

Box-Behnken Design

LHS Design

Statistical Learning Based Models **Proxy Model Evaluation**

Reduced Order Method Based Models Background (1)

- Proper Orthogonal Decomposition (POD)
 - Represent high-dimensional state vectors (e.g., pressure & saturation in every grid block) with small number of variables by feature extraction
- Trajectory Piecewise Linearization (TPWL)
 - Predict results for new simulations by linearizing around previous (training) simulations

Reduced Order Method Based Models Background (2)

- Retain the physics of the original problem
- Overhead is required to build the POD-TPWL model
- Evaluation of POD-TPWL model takes only seconds
- Applied previously to oil-water problems for optimization and history matching (Cardoso and Durlofsky 2010, 2011; He *et al.* 2011, 2013)

Reduced Order Method Based Models **4-Horizontal Well Problem (CO₂ Storage)**

Reduced Order Method Based Models **POD-TPWL Performance: BHP Control for Wells**

Reduced Order Method Based Models **POD-TPWL Performance: Rate Control for Wells**

Reduced Order Method Based Models POD-TPWL Performance: Geological Perturbation

Fig. 27. CO2 injection well BHPs for test case (geological perturbation example).

Results demonstrate that the approach is able to capture basic solution trends

Uncertainty and Sensitivity Analysis **Problem Definition**

Inputs:

- Slope of CO₂ fractional flow curve
- Initial P, T
- CO₂ injection rate
- Time of injection
- Reservoir thickness
- Average porosity
- Radial extent of reservoir
- Reservoir permeability
 anisotropy ratio
- Total compressibility
- Caprock thickness
- Caprock porosity
- Layer permeability arrangement indicator

Models:

- **'A'** Box-Behnken fitted with quadratic polynomial model
- **'B'** Maximin LHS fitted with kriging model
- **'C'** simplified physicsbased models

Cumulative distribution functions (CDFs) evaluated for performance metrics:

 R_{CO2} , ΔP_{Rava}

Uncertainty and Sensitivity Analysis Simplified Model Performance

Simplified models can capture full range of outcomes predicted by full-physics model

Accomplishments to Date

- Developed simplified predictive models for dimensionless RPBM injectivity, average reservoir pressure buildup and CO₂ plume migration extent (storage efficiency)
 - Compared performance of different metamodeling approaches for building proxy models

ROMBM

- SLBM Evaluated experimental design (Box-Behnken) and sampling design (Latin Hypercube sampling) schemes
 - Demonstrated applicability of POD-TPWL for CO₂ injection into saline aquifers using a compositional simulator
 - Evaluated different well constraints and effects of geologic reservoir heterogeneity

RPBM and SLBM models validated using uncertainty and sensitivity analysis

Synergy Opportunities

- Complements discussions on model complexity by Princeton U. vis-à-vis the limits of applicability of simplified v/s full physics models
- Complements discussions on response surface uncertainty analysis by U. Wyoming vis-à-vis various statistical techniques for model building
- Provides inputs to LANL discussion regarding use of science-based simplified (abstracted) models in performance and risk assessment

Summary

- Successful development of simplified predictive models for layered reservoir-caprock systems
 - $\circ\,$ Reduced physics models for injectivity and plume radius
 - Improved proxy modeling workflow using BB/LHS designs
 - Application of POD-TPWL scheme to CO₂-brine systems
- Benefits to stakeholders
 - Site developers, regulators ⇒ simplicity, limited data
 - Modelers, risk assessors ⇒ computational efficiency

Appendix

These slides will not be discussed during the presentation, but are mandatory

Organization Chart

Project Manager – William O'Dowd (DOE)

Gantt Chart

	BP1		BP2			BP3						
Task Name		10/2012-09/2013			10/2013-09/2014			10/2014-09/2015				
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1: Project Management												
1.1 Project Management & Planning												
1.2 Update Project Mgmt. Plan	X											
1.3 Progress Reporting		X	X	X	Х	X	X					
1.4 Project Controls												
1.5 Deliverables and Reporting												
Task 2: Simplified physics based modeling												
2.1 Numerical experiments												
2.2 Models for two-phase region behavior												
2.3 Models for pressure buildup												
Task 3: Statistical learning based modeling												
3.1 Design matrix generation												
3.2 Computer simulations												
3.3 Analysis of computer experiments												
Task 4: ROM-based modeling												-0
4.1 Black-oil ROM procedures												
4.2 Compositional ROM procedures												
Task 5: Validation using UA/SA								(
5.1 Problem definition												
5.2 Probabilistic simulation												
5.3 Analysis of results												

Bibliography (1)

Journals, multiple authors

- Swickrath, M.J., Mishra, S. and Ravi Ganesh, P., 2015, *An evaluation of sharp interface models for CO₂-brine displacement in aquifers*, Groundwater (in press)
- Ravi Ganesh, P. and Mishra, S., 2015, Simplified physics model of CO₂ plume extent in stratified aquifer-caprock systems, Greenhouse Gases: Science and Technology (in press)
- Schuetter, J., S. Mishra, and D. Mooney, 2015, *Metamodeling techniques for a CO*₂ geo-sequestration problem, Computational Geosciences (in preparation).
- Ravi Ganesh, P. and S. Mishra, 2015, *An algorithm for reduced-physics modeling of CO*₂ storage in layered formations: Computers and Geosciences (in preparation).
- Jin, L., J. He and L. Durlofsky, 2015, *Reduced-order models for* CO₂ geologic sequestration using Proper Orthogonal Decomposition and Trajectory Piecewise Linearization, Intl. J. Greenhouse Gas Control (in preparation).

Bibliography (2)

Conference, multiple authors

- Mishra, S., Ravi Ganesh, P., Schuetter, J., He, J., Jin, Z., and Durlofsky, L.J., 2015, *Developing and validating simplified predictive models for CO*₂ geologic sequestration, SPE-175097, ATCE, Sept. 28-30.
- Schuetter, J. and S. Mishra, 2015. *Experimental design or Monte Carlo simulation? Strategies for building robust surrogate models*, SPE-174905, ATCE, Sept 28-30.
- Ravi Ganesh, P., and S. Mishra, 2015, *Simplified model of CO*₂ *injection-driven pressure buildup in semiclosed layered formations*, Carbon Capture Utilization & Storage Conference, Pittsburgh, PA, April 19-22.
- Schuetter, J., Mishra, S., Ravi Ganesh, P. and Mooney, D., 2014, *Building statistical proxy models for CO*₂ *geologic sequestration*, Energy Procedia, Vol. 63, pp. 3702-3714.
- Ravi Ganesh, P., and Mishra, S., 2014, *Reduced physics modeling of CO₂ injectivity*, Energy Procedia, Vol. 63, pp. 3116-3125.
- Schuetter, J., Mishra, S., and Mooney, D., 2014, *Evaluation of metamodeling techniques on a CO₂ injection simulation study*, Proc., 7th International Congress on Environmental Modelling and Software, San Diego, California, USA, D.P. Ames, N. Quinn (Eds.), June 16-19.
- Mishra, S., P. Ravi Ganesh, J. Schuetter, D. Mooney, J. He, and L. Durlofsky, 2014, Simplified predictive models for CO₂ sequestration performance assessment, 2014 European Geoscience Union General Assembly, Vienna, Austria, April 29 May 2.
- Ravi Ganesh, P., and S. Mishra, 2014, *Simplified predictive models of CO*₂ *plume movement in 2-D layered formations*, Carbon Capture Utilization and Storage Conference, Pittsburgh, PA, April 28–May 1.
- Ravi Ganesh, P. and S. Mishra, 2013, Simplified predictive modeling of CO₂ geologic sequestration in saline formations: Insights into key parameters governing buoyant plume migration and pressure 32 propagation, Carbon Management Technology Conference, Arlington, VA, Oct 20-22.